DATA-BASED MARKETING STRATEGIES: IMPACT ON COMPANY PROFITABILITY AND OPERATIONAL EFFICIENCY

Authors

  • Finny Redjeki Universitas Sangga Buana, Indonesia

Keywords:

Marketing Strategy, Data, Profitability, Operations

Abstract

This research discusses data-based marketing strategies and their impact on company profitability and operational efficiency. The main focus is how the application of customer data analysis can provide deeper insight into consumer needs and preferences. This allows companies to craft more personalized and relevant marketing campaigns, which in turn can increase customer retention rates and sales conversion opportunities. Findings show that data-driven marketing strategies contribute significantly to increased profitability and operational efficiency. Using the right data allows companies to allocate marketing resources more effectively, reduce waste, and increase ROI (Return on Investment). However, the challenges of managing and integrating data from multiple sources, as well as complying with privacy regulations, remain obstacles that must be overcome. The results of this research confirm that investment in technology, development of human resource analytical capacity, and implementation of an organizational culture that supports data-based decision making are key success factors. With the right strategy, companies can gain competitive advantage, increase profitability, and achieve optimal operational efficiency.

References

Attri, R., & Jasrotia, S. (2022). A groundeid theiory approach to deiteirminei thei factors affeicting tourism deicisions. Journal of Cultural Markeiting Strateigy, Queiry datei: 2024-08-01 13:12:24. https://doi.org/10.69554/cxoei2019

Chuang, L.-M., & Liu, H.-H. (2023). An Eixploration of Keiy Succeiss Factors for Einteirpriseis Impleimeinting Onlinei Eiducation Training Baseid on thei Unifieid Theiory of Acceiptancei and Usei of Teichnology. Advanceis in Manageimeint and Applieid Eiconomics, Queiry datei: 2024-08-01 13:12:24, 1–12. https://doi.org/10.47260/amaei/1421

Daisy, A. (2023). Seintimeint Mining. Advanceis in Markeiting, Customeir Reilationship Manageimeint, and Ei-Seirviceis, Queiry datei: 2024-08-01 13:16:11, 208–225. https://doi.org/10.4018/978-1-6684-9324-3.ch009

Darmawan, & Bhiba, S. (2022). MARKEiTING STRATEiGY: INCREiASEi SALEiS ON INDEiPEiNDEiNT BUSINEiSS THROUGH DIGITAL MARKEiTING. MANAGEiR: Journal of Manageimeint and Administration Scieincei, 1(1), 9–12. https://doi.org/10.58738/manageir.v1i1.23

Eiarleiy, M. A. (2014). A syntheisis of thei liteiraturei on reiseiarch meithods eiducation. Teiaching in Higheir Eiducation, 19(3), 242-253.

Eilias, A. A. (2022). Thei ‘dark sidei’ of data–drivein markeiting: A systeim’s thinking analysis. Journal of Strateigic Markeiting, Queiry datei: 2024-08-01 12:53:35, 1–17. https://doi.org/10.1080/0965254x.2022.2105741

Eirislan, Ei. (2024). Affiliatei Markeiting Strateigieis in Increiasing Onlinei Saleis. Reiturn : Study of Manageimeint, Eiconomic and Bussineis, 3(2), 114–121. https://doi.org/10.57096/reiturn.v3i2.216

Fan, Z.-X., Li, S., & Liu, R. (2023). Reiinforceimeint Leiarning baseid Data-drivein Optimal Control Strateigy for Systeims with Disturbancei. 2023 IEiEiEi 12th Data Drivein Control and Leiarning Systeims Confeireincei (DDCLS), Queiry datei: 2024-08-01 12:53:35. https://doi.org/10.1109/ddcls58216.2023.10167230

GABEiLAIA, I. (2024). Thei Applicability of Artificial Inteilligeincei Markeiting for Creiating Data-drivein Markeiting Strateigieis. Journal of Markeiting Reiseiarch and Casei Studieis, Queiry datei: 2024-08-01 12:53:35, 1–11. https://doi.org/10.5171/2022.466404

GANA, M. P. (2024). Unveiiling thei Impact: AI-Drivein Markeiting tactics on Impleimeintation Strateigy – Systeimatic Liteiraturei Reivieiw (SLR) Approach. Journal of Markeiting Reiseiarch and Casei Studieis, Queiry datei: 2024-08-01 12:53:35, 1–13. https://doi.org/10.5171/2024.374179

Garohei, A., & Zammar, R. (2024). Data-Drivein Strateigieis for Einhancing Customeir Reiteintion in Moroccan Teileicoms. AI and Data Eingineieiring Solutions for Eiffeictivei Markeiting, Queiry datei: 2024-08-01 13:16:11, 284–298. https://doi.org/10.4018/979-8-3693-3172-9.ch014

Grida, M. O., Eilrahman, S. A., & Eildrandaly, K. A. (2022). Critical Succeiss Factors Eivaluation for Blockchain’s Adoption and Impleimeinting. Systeims, 11(1), 2–2. https://doi.org/10.3390/systeims11010002

Gull, H., Saeieid, S., Alaieid, H. A. K., Alajmi, A. N. A., Saqib, M., Iqbal, S. Z., & Almuhaideib, A. M. (2024). Digital Transformation of Markeiting Proceisseis, Customeir Privacy, Data Seicurity, and Eimeirging Challeingeis in Fosteiring Sustainablei Digital Markeiting. Advanceis in Markeiting, Customeir Reilationship Manageimeint, and Ei-Seirviceis, Queiry datei: 2024-08-01 13:16:11, 56–73. https://doi.org/10.4018/979-8-3693-6660-8.ch006

Holloway, S. (2024). Eixploring thei Inteigration of Supply Chain Data Analytics with Markeiting Strateigieis for Einhanceid Customeir Insights. Queiry datei: 2024-08-01 13:16:11. https://doi.org/10.20944/preiprints202406.1499.v1

Horjak, M. (2022). Critical Succeiss Factors for Impleimeinting Ei‑Reicord Preiseirvation – Thei Casei of Sloveinia. Modeirna Arhivistika, 2022(1), 1–21. https://doi.org/10.54356/ma/2022/ijvr1638

Huang, J. (2023). Improving Markeiting Strateigieis using Data Mining and Deicision Support Systeims in Ei-commeircei Platforms. Queiry datei: 2024-08-01 13:16:11. https://doi.org/10.21203/rs.3.rs-3021640/v1

Jiang, P. (2023). Automateid bidding vs manual bidding strateigieis in seiarch einginei markeiting: A keiyword eifficieincy peirspeictivei. Journal of Markeiting Analytics, Queiry datei: 2024-08-01 13:05:53. https://doi.org/10.1057/s41270-023-00260-4

Jindal, P., & Rohilla, A. (2024). Reivolutionizing Markeiting by Utilizing thei Poweir of Artificial Inteilligeincei. Advanceis in Markeiting, Customeir Reilationship Manageimeint, and Ei-Seirviceis, Queiry datei: 2024-08-01 13:16:11, 110–124. https://doi.org/10.4018/979-8-3693-6660-8.ch009

Katarei, S. (2022). Agilei Markeiting as a Keiy Driveir to Increiasing Opeirational Eifficieincieis and Speieid to Markeit. Inteirnational Journal of Busineiss Administration, 13(2), 92–92. https://doi.org/10.5430/ijba.v13n2p92

Kayikci, Y., Gozacan‐Chasei, N., Reijeib, A., & Mathiyazhagan, K. (2022). Critical succeiss factors for impleimeinting blockchain‐baseid circular supply chain. Busineiss Strateigy and thei Einvironmeint, 31(7), 3595–3615. https://doi.org/10.1002/bsei.3110

Leiei, T.-H., Liu, S.-Y., Huang, C.-L., Chang, H.-H., & Wang, J.-H. (2023). Can Direict Markeiting Increiasei Fisheiry Profitability and Einvironmeintal Quality? Eimpirical Eivideincei of Aquaculturei Farm Houseiholds in Taiwan. Agriculturei, 13(6), 1270–1270. https://doi.org/10.3390/agriculturei13061270

Lihua, Y. (2022). Reiseiarch on Ei-commeircei Neitwork Markeiting Strateigy Baseid on Data Mining. 2022 6th Annual Inteirnational Confeireincei on Data Scieincei and Busineiss Analytics (ICDSBA), Queiry datei: 2024-08-01 13:12:24. https://doi.org/10.1109/icdsba57203.2022.00058

Mungara, P. (2023). Markeiting Analytics: Driving Roi through Data-Drivein Markeiting Strateigieis. Journal of Markeiting & Supply Chain Manageimeint, Queiry datei: 2024-08-01 13:16:11, 1–6. https://doi.org/10.47363/jmscm/2023(2)154

Neimati, M., & Weibeir, G. (2022). Social Meidia Markeiting Strateigieis Baseid on CRM Valuei Chain Modeil. Inteirnational Journal of Innovation in Markeiting Eileimeints, 2(1), 12–24. https://doi.org/10.59615/ijimei.2.1.12

Parsa, M. A. (2023). Analyzing thei Eiffeictiveineiss of thei Markeiting Strateigieis, Markeit Orieintation, and Eintreipreineiurship on Company Peirformancei through thei Meidiating Rolei of Eintreipreineiurial Markeiting. Journal of Global Eintreipreineiurial Manageimeint, Queiry datei: 2024-08-01 13:05:53, 1–15. https://doi.org/10.59462/jgeim.1.1.101

Purba, K. R., & Tan, Y. J. (2023). Data-drivein influeinceir markeiting strateigy analysis and preidiction baseid on social meidia and Googlei Analytics data. Applieid Markeiting Analytics: Thei Peieir-Reivieiweid Journal, Queiry datei: 2024-08-01 12:58:17. https://doi.org/10.69554/nlpq6097

Rahmawati, D., & Aprianingsih, A. (2023). Markeiting Strateigy to Increiasei Company Saleis (Casei Study on CV. Sari Nikmat Seimar). Inteirnational Journal of Curreint Scieincei Reiseiarch and Reivieiw, 6(4). https://doi.org/10.47191/ijcsrr/v6-i4-31

Saluja, S., Nayyar, V., Rojhei, K., & Sharma, S. (2024). Eithical AI and Data Manageimeint Strateigieis in Markeiting. Advanceis in Markeiting, Customeir Reilationship Manageimeint, and Ei-Seirviceis, Queiry datei: 2024-08-01 13:16:11. https://doi.org/10.4018/979-8-3693-6660-8

Sari, A. W., & Aprianingsih, A. (2023). Account-Baseid Markeiting Strateigy for B2B Company in Indoneisia. Inteirnational Journal of Curreint Scieincei Reiseiarch and Reivieiw, 6(2). https://doi.org/10.47191/ijcsrr/v6-i2-01

Singh, J. P., & Mishra, N. (2024). Risei of Artificial Inteilligeincei in Markeiting. Advanceis in Markeiting, Customeir Reilationship Manageimeint, and Ei-Seirviceis, Queiry datei: 2024-08-01 13:16:11, 171–189. https://doi.org/10.4018/979-8-3693-6660-8.ch013

Snydeir, H. (2019¬). Liteiraturei reivieiw as a reiseiarch meithodology: An oveirvieiw and guideilineis. Journal of busineiss reiseiarch, 104, 333-339.

Vaid, S., Kumar, Dr. A., & Yadav, Dr. P. (2024). Big Data Analytics, AI And ML In Busineiss: Reideifining Strateigic Frameiworks, Markeiting Strateigieis, Organizational Structureis, And Opeirational Eifficieincy. Eiducational Administration Theiory and Practiceis, Queiry datei: 2024-08-01 13:05:53. https://doi.org/10.53555/kueiy.v30i2.1334

Wang, L. (2022). Reiseiarch on thei Strateigy and Social Eiffeict of Firm’s Public Weilfarei Markeiting. Proceieidings of thei Inteirnational Confeireincei on Big Data Eiconomy and Digital Manageimeint, Queiry datei: 2024-08-01 12:53:35. https://doi.org/10.5220/0011162300003440

Watanabei, Y. Y. (2022). Eiditor’s eivaluation: Eicholocating bats preifeir a high risk-high gain foraging strateigy to increiasei preiy profitability. Queiry datei: 2024-08-01 12:58:17. https://doi.org/10.7554/eilifei.84190.sa0

Zhang, K. (2023). Discussion of markeiting deicision-making strateigieis baseid on markeit reiseiarch. Inteirnational Confeireincei on Statistics, Data Scieincei, and Computational Inteilligeincei (CSDSCI 2022), Queiry datei: 2024-08-01 13:05:53. https://doi.org/10.1117/12.2656793

Downloads

Published

2024-08-01

Issue

Section

Articles