DATA MINING CUSTOMER CLUSTERING USING K-MEANS METHOD
Keywords:
Data Mining, K-Means Clustering, Customer Grouping.Abstract
The company recognizes the crucial role of customers in achieving business success and as the main source of revenue. Therefore, it is important for companies to understand the needs and desires of customers in order to build a mutually beneficial relationship. Customers have functional and emotional needs that they want to fulfill through the products or services they buy. Customer experience, both positive and negative, has a significant impact on satisfaction, loyalty and corporate image. This research faces the challenge of decreasing the number of customers who make purchases at these companies or service providers. To overcome this problem, companies need to adopt an effective market strategy to improve operational efficiency and better understand customer needs. One approach used is to understand customer needs through grouping, so that companies can develop products or services that are more suitable for each customer group. This helps improve the product's relationship with customer needs and provides services that match their expectations. Customer grouping was performed using the K-means algorithm, with 47 customers grouped based on relevant attributes. Determining the optimal number of clusters is done by comparing the performance of the clusters that are formed, and the results produce two new clusters with different numbers of customers. The K-means algorithm is implemented using the RapidMiner application to simplify the process. The final analysis shows that the second cluster has more customers than the first cluster. This research confirms the importance of understanding customer needs, classifying them appropriately, and taking effective actions to maintain customer satisfaction. The K-means algorithm and the RapidMiner application prove to be very useful in this process, enabling companies to strengthen customer relationships and create significant added value. The final results of this study indicate that the first cluster (cluster 0) contains 22 customers, while the second cluster (cluster 2) contains 25 customers. Therefore, the second cluster has a larger number of customers compared to the first cluster.
References
M. Marsono, D. Saripurna, and M. Zunaidi, “Analisis Data Mining Pada Strategi Penjualan Produk PT Aquasolve Sanaria Dengan Menggunakan Metode K-Means Clustering,” J-SISKO TECH (Jurnal Teknol. Sist. Inf. dan Sist. Komput. TGD), vol. 4, no. 1, p. 127, 2021, doi: 10.53513/jsk.v4i1.60.
A. Sulistiyawati and E. Supriyanto, “Implementasi Algoritma K-means Clustring dalam Penetuan Siswa Kelas Unggulan,” J. Tekno Kompak, vol. 15, no. 2, pp. 25–36, 2021.
R. M. F. Lubis, J.-P. Huang, P.-C. Wang, K. Khoifin, M. Sigiro, and J. Panjaitan, “Data Clustering Mining Applying the K-Means Algorithm, Cervical Cancer Behavior Risk,” J. MEDIA Inform. BUDIDARMA, vol. 7, no. 2, pp. 819–827, 2023.
R. Muliono and Z. Sembiring, “Data Mining Clustering Menggunakan Algoritma K-Means Untuk Klasterisasi Tingkat Tridarma Pengajaran Dosen,” CESS (Journal Comput. Eng. Syst. Sci., vol. 4, no. 2, pp. 272–279, 2019.
D. M. Sinaga, A. P. Windarto, D. Hartama, and S. Saifullah, “Pengelompokkan Indeks Harga Konsumen Menurut Kota Dengan Datamining Clustering,” in Seminar Nasional Sains dan Teknologi Informasi (SENSASI), 2019, vol. 2, no. 1.
A. Pangestu and T. Ridwan, “Penerapan Data Mining Menggunakan Algoritma K-Means Pengelompokan Pelanggan Berdasarkan Kubikasi Air Terjual Menggunakan Weka,” JUST IT J. Sist. Informasi, Teknol. Inf. dan Komput., vol. 12, no. 3, pp. 67–71, 2022.
A. S. L. T. T. H. Hafizah, “Data Mining Estimasi Biaya Produksi Ikan Kembung Rebus Dengan Regresi Linier Berganda,” J. Sist. Inf. Triguna Dharma (JURSI TGD), no. Vol 1, No 6 (2022): EDISI NOVEMBER 2022, pp. 888–897, 2022, [Online]. Available: https://ojs.trigunadharma.ac.id/index.php/jsi/article/view/5732/1938
Y. L. Nainel, E. Buulolo, and I. Lubis, “Penerapan Data Mining Untuk Estimasi Penjualan Obat Berdasarkan Pengaruh Brand Image Dengan Algoritma Expectation Maximization (Studi Kasus: PT. Pyridam Farma Tbk),” JURIKOM (Jurnal Ris. Komputer), vol. 7, no. 2, p. 214, 2020, doi: 10.30865/jurikom.v7i2.2097.
M. Azhari, Z. Situmorang, and R. Rosnelly, “Perbandingan Akurasi, Recall, dan Presisi Klasifikasi pada Algoritma C4.5, Random Forest, SVM dan Naive Bayes,” J. Media Inform. Budidarma, vol. 5, no. 2, p. 640, 2021, doi: 10.30865/mib.v5i2.2937.
S. Widaningsih, “Perbandingan Metode Data Mining Untuk Prediksi Nilai Dan Waktu Kelulusan Mahasiswa Prodi Teknik Informatika Dengan Algoritma C4,5, Naïve Bayes, Knn Dan Svm,” J. Tekno Insentif, vol. 13, no. 1, pp. 16–25, 2019, doi: 10.36787/jti.v13i1.78.
H. Maulidiya and A. Jananto, “Asosiasi Data Mining Menggunakan Algoritma Apriori dan FP-Growth sebagai Dasar Pertimbangan Penentuan Paket Sembako,” Proceeding SENDIU 2020, vol. 6, pp. 36–42, 2020.
F. Harahap, “Perbandingan Algoritma K Means dan K Medoids Untuk Clustering Kelas Siswa Tunagrahita,” TIN Terap. Inform. Nusant., vol. 2, no. 4, pp. 191–197, 2021.
M. A. Rofiq, A. Qoiriah, S. Kom, and M. Kom, “Pengelompokan Kategori Buku Berdasarkan Judul Menggunakan Algoritma Agglomerative Hierarchical Clustering Dan K-Medoids,” J. Informatics Comput. Sci., vol. 2, no. 03, pp. 220–227, 2021.
B. Harli Trimulya Suandi As and L. Zahrotun, “PENERAPAN DATA MINING DALAM MENGELOMPOKKAN DATA RIWAYAT AKADEMIK SEBELUM KULIAH DAN DATA KELULUSAN MAHASISWA MENGGUNAKAN METODE AGGLOMERATIVE HIERARCHICAL CLUSTERING (Implementation Of Data Mining In Grouping Academic History Data Before Students And Stud,” J. Teknol. Informasi, Komput. dan Apl., vol. 3, no. 1, pp. 62–71, 2021, [Online]. Available: http://jtika.if.unram.ac.id/index.php/JTIKA/
M. M. Effendi, “Menentukan Prediksi Kelulusan Siswa Dengan Membandingkan Algoritma C4. 5 Dan Naive Bayes Studi Kasus SMKN. 1 Cikarang Selatan,” J. SIGMA, vol. 11, no. 3, pp. 143–148, 2020.
S. U. Putri, E. Irawan, and F. Rizky, “Implementasi Data Mining Untuk Prediksi Penyakit Diabetes Dengan Algoritma C4. 5,” Kesatria J. Penerapan Sist. Inf. (Komputer dan Manajemen), vol. 2, no. 1, pp. 39–46, 2021.
S. Widaningsih, “Perbandingan Metode Data Mining Untuk Prediksi Nilai Dan Waktu Kelulusan Mahasiswa Prodi Teknik Informatika Dengan Algoritma C4, 5, Naïve Bayes, Knn Dan Svm,” J. Tekno Insentif, vol. 13, no. 1, pp. 16–25, 2019.
H. Maulidiya and A. Jananto, “Asosiasi Data Mining Menggunakan Algoritma Apriori Dan Fpgrowth Sebagai Dasar Pertimbangan Penentuan Paket Sembako,” 2020.
K. Erwansyah, B. Andika, and R. Gunawan, “Implementasi Data Mining Menggunakan Asosiasi Dengan Algoritma Apriori Untuk Mendapatkan Pola Rekomendasi Belanja Produk Pada Toko Avis Mobile,” J. Teknol. Sist. Inf. dan Sist. Komput. TGD, vol. 4, no. 1, pp. 148–161, 2021.
A. Damuri, U. Riyanto, H. Rusdianto, and M. Aminudin, “Implementasi Data Mining dengan Algoritma Naïve Bayes Untuk Klasifikasi Kelayakan Penerima Bantuan Sembako,” JURIKOM (Jurnal Ris. Komputer), vol. 8, no. 6, pp. 219–225, 2021.
I. A. Nikmatun and I. Waspada, “Implementasi Data Mining untuk Klasifikasi Masa Studi Mahasiswa Menggunakan Algoritma K-Nearest Neighbor,” Simetris J. Tek. Mesin, Elektro dan Ilmu Komput., vol. 10, no. 2, pp. 421–432, 2019.
H. Hozairi, A. Anwari, and S. Alim, “Implementasi Orange Data Mining Untuk Klasifikasi Kelulusan Mahasiswa Dengan Model K-Nearest Neighbor, Decision Tree Serta Naive Bayes,” Netw. Eng. Res. Oper., vol. 6, no. 2, pp. 133–144, 2021.
A. Rivandi, E. Bu’ulolo, and N. Silalahi, “Penerapan Metode Regresi Linier Berganda Dalam Estimasi Biaya Pencetakan Spanduk (Studi Kasus: PT. Hansindo Setiapratama),” Pelita Inform. Inf. dan Inform., vol. 7, no. 3, pp. 263–268, 2019.
P. Purwadi, P. S. Ramadhan, and N. Safitri, “Penerapan Data Mining Untuk Mengestimasi Laju Pertumbuhan Penduduk Menggunakan Metode Regresi Linier Berganda Pada BPS Deli Serdang,” J. SAINTIKOM (Jurnal Sains Manaj. Inform. dan Komputer), vol. 18, no. 1, pp. 55–61, 2019.
. F., F. T. Kesuma, and S. P. Tamba, “Penerapan Data Mining Untuk Menentukan Penjualan Sparepart Toyota Dengan Metode K-Means Clustering,” J. Sist. Inf. dan Ilmu Komput. Prima(JUSIKOM PRIMA), vol. 2, no. 2, pp. 67–72, 2020, doi: 10.34012/jusikom.v2i2.376.
S. A. Rahmah, “KLASTERISASI POLA PENJUALAN PESTISIDA MENGGUNAKAN METODE K-MEANS CLUSTERING ( STUDI KASUS DI TOKO JUANDA TANI KECAMATAN HUTABAYU RAJA ),” vol. 1, no. 1, pp. 1–5, 2020.
M. A. K-means, “1 , 2 , 3 1,” vol. 1, no. 2, pp. 161–166, 2021.
W. Purba, W. Siawin, and . H., “Implementasi Data Mining Untuk Pengelompokkan Dan Prediksi Karyawan Yang Berpotensi Phk Dengan Algoritma K-Means Clustering,” J. Sist. Inf. dan Ilmu Komput. Prima(JUSIKOM PRIMA), vol. 2, no. 2, pp. 85–90, 2019, doi: 10.34012/jusikom.v2i2.429.
H. A. Wijaya, W. Suharso, and Y. Azhar, “PENERAPAN FREQUENCY, RECENCY, MONETERY MODEL DAN ALGORITMA K-MEAN PADA SISTEM PENGELOMPOKAN PELANGGAN”.
D. K. Gultom, M. Arif, and M. Fahmi, “Determinasi kepuasan pelanggan terhadap loyalitas pelanggan melalui kepercayaan,” Maneggio J. Ilm. Magister Manaj., vol. 3, no. 2, pp. 171–180, 2020.
I. C. Saragih, D. Hartama, and A. Wanto, “Prediksi Perkembangan Jumlah Pelanggan Listrik Menurut Pelanggan Area Menggunakan Algoritma Backpropagation,” Build. Informatics, Technol. Sci., vol. 2, no. 1, pp. 48–53, 2020.
A. Syafii, G. Dwilestari, and A. Ajiz, “KOMPARASI ALGORITMA NAÏVE BAYES DAN ALGORITMA C4. 5 DALAM KLASIFIKASI PELANGGAN PRODUK INDIHOME”.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 INTERNATIONAL JOURNAL OF ECONOMIC LITERATURE

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
INTERNATIONAL JOURNAL OF ECONOMIC LITERATURE © 2023 by Adisam Publisher is licensed under CC BY-SA 4.0