ECONOMIC OPTIMIZATION IN THE AGE OF ARTIFICIAL INTELLIGENCE: OPPORTUNITIES AND CHALLENGES
Keywords:
Optimization, Economy, Age of Artificial Intelligence, Opportunities and Challenges.Abstract
The era of artificial intelligence (AI) arrived with promises of major transformation in various economic sectors. With its ability to automate routine tasks, improve decision-making, and enhance product and service innovation, AI has the potential to significantly improve operational efficiency and drive economic growth. The research methods carried out on this study are literature by searching for references that match the context of the research. Research shows that the use of AI in economic terms increases productivity, facilitates innovation, and adapts the labour market to the digital age, while the challenges of AI integration relate to privacy and data security, labour market disruptions, and ethical issues related to machine decision-making. Therefore, despite the significant challenges, with a wise and proactive approach, the transition to the era of artificial intelligence can be a major driver of economic optimization and social progress.
References
Abrardi, L., Cambini, C., & Rondi, L. (2022). Artificial intelligence, firms and consumer behavior: A survey. Journal of Economic Surveys, 36(4), 969-991.
Agrawal, A., Gans, J., & Goldfarb, A. (Eds.). (2019). The economics of artificial intelligence: an agenda. University of Chicago Press.
Athanasopoulou, K., Daneva, G. N., Adamopoulos, P. G., & Scorilas, A. (2022). Artificial intelligence: the milestone in modern biomedical research. BioMedInformatics, 2(4), 727-744.
Bazeley, P. (2013). Qualitative data analysis: Practical strategies. sage.
Bickley, S. J., Chan, H. F., & Torgler, B. (2022). Artificial intelligence in the field of economics. Scientometrics, 127(4), 2055-2084.
Chadebecq, F., Lovat, L. B., & Stoyanov, D. (2023). Artificial intelligence and automation in endoscopy and surgery. Nature Reviews Gastroenterology & Hepatology, 20(3), 171-182.
Chen, B., Wu, Z., & Zhao, R. (2023). From fiction to fact: the growing role of generative AI in business and finance. Journal of Chinese Economic and Business Studies, 21(4), 471-496.
Deranty, J. P., & Corbin, T. (2022). Artificial intelligence and work: a critical review of recent research from the social sciences. AI & SOCIETY, 1-17.
Dirican, C. (2015). The impacts of robotics, artificial intelligence on business and economics. Procedia-Social and Behavioral Sciences, 195, 564-573.
Ekmekci, P. E., Arda, B., Ekmekci, P. E., & Arda, B. (2020). History of artificial intelligence. Artificial Intelligence and Bioethics, 1-15.
Ernst, E., Merola, R., & Samaan, D. (2019). Economics of artificial intelligence: Implications for the future of work. IZA Journal of Labor Policy, 9(1).
Escalé-Besa, A., Yélamos, O., Vidal-Alaball, J., Fuster-Casanovas, A., Miró Catalina, Q., Börve, A., ... & Marin-Gomez, F. X. (2023). Exploring the potential of artificial intelligence in improving skin lesion diagnosis in primary care. Scientific Reports, 13(1), 4293.
Flasiński, M., & Flasiński, M. (2016). History of artificial intelligence. Introduction to artificial intelligence, 3-13.
Gao, Q., Yang, L., Lu, M., Jin, R., Ye, H., & Ma, T. (2023). The artificial intelligence and machine learning in lung cancer immunotherapy. Journal of Hematology & Oncology, 16(1), 55.
Gonçalves, A. R., Breda Meira, A., Shuqair, S., & Costa Pinto, D. (2023). Artificial intelligence (AI) in FinTech decisions: The role of congruity and rejection sensitivity. International Journal of Bank Marketing, 41(6), 1282-1307.
Gonzales, J. T. (2023). Implications of AI innovation on economic growth: a panel data study. Journal of Economic Structures, 12(1), 13.
Graue, C. (2015). Qualitative data analysis. International Journal of Sales, Retailing & Marketing, 4(9), 5–14.
Gries, T., & Naudé, W. (2022). Modelling artificial intelligence in economics. Journal for labour market research, 56(1), 12.
Kaul, V., Enslin, S., & Gross, S. A. (2020). History of artificial intelligence in medicine. Gastrointestinal endoscopy, 92(4), 807-812.
Kinkel, S., Capestro, M., Di Maria, E., & Bettiol, M. (2023). Artificial intelligence and relocation of production activities: An empirical cross-national study. International Journal of Production Economics, 261, 108890.
Kubassova, O., Shaikh, F., Melus, C., & Mahler, M. (2021). History, current status, and future directions of artificial intelligence. Precision Medicine and Artificial Intelligence, 1-38.
Linos, K., & Carlson, M. (2017). Qualitative methods for law review writing. U. Chi. L. Rev., 84, 213.
Liu, P. R., Lu, L., Zhang, J. Y., Huo, T. T., Liu, S. X., & Ye, Z. W. (2021). Application of artificial intelligence in medicine: an overview. Current Medical Science, 41(6), 1105-1115.
Lu, Y., & Zhou, Y. (2021). A review on the economics of artificial intelligence. Journal of Economic Surveys, 35(4), 1045-1072.
Luchini, C., Pea, A., & Scarpa, A. (2022). Artificial intelligence in oncology: current applications and future perspectives. British Journal of Cancer, 126(1), 4-9.
Mijwel, M. M. (2015). History of Artificial Intelligence Yapay Zekânın T arihi. Computer Science,(April 2015), 3-4.
Muthukrishnan, N., Maleki, F., Ovens, K., Reinhold, C., Forghani, B., & Forghani, R. (2020). Brief history of artificial intelligence. Neuroimaging Clinics of North America, 30(4), 393-399.
Newell, A. (1982). Intellectual issues in the history of artificial intelligence. Artificial Intelligence: Critical Concepts, 25-70.
Noble, H., & Smith, J. (2014). Qualitative data analysis: A practical example. Evidence-Based Nursing, 17(1), 2–3.
Pasquinelli, M. (2023). The eye of the master: A social history of artificial intelligence. Verso Books.
Reay, T. (2014). Publishing qualitative research. Sage Publications Sage CA: Los Angeles, CA.
Ruiz-Real, J. L., Uribe-Toril, J., Torres, J. A., & De Pablo, J. (2021). Artificial intelligence in business and economics research: Trends and future. Journal of Business Economics and Management, 22(1), 98-117.
Sevgi, U. T., Erol, G., Doğruel, Y., Sönmez, O. F., Tubbs, R. S., & Güngor, A. (2023). The role of an open artificial intelligence platform in modern neurosurgical education: a preliminary study. Neurosurgical review, 46(1), 86.
Sgier, L. (2012). Qualitative data analysis. An Initiat. Gebert Ruf Stift, 19, 19–21.
Shreve, J. T., Khanani, S. A., & Haddad, T. C. (2022). Artificial intelligence in oncology: current capabilities, future opportunities, and ethical considerations. American Society of Clinical Oncology Educational Book, 42, 842-851.
Stephens, E. (2023). The mechanical Turk: A short history of ‘artificial artificial intelligence’. Cultural Studies, 37(1), 65-87.
Umer, F., & Habib, S. (2022). Critical analysis of artificial intelligence in endodontics: a scoping review. Journal of Endodontics, 48(2), 152-160.
Van de Gevel, A. J., Noussair, C. N., van de Gevel, A. J., & Noussair, C. N. (2013). The nexus between artificial intelligence and economics (pp. 1-110). Springer Berlin Heidelberg.
Varian, H. R. (2018). Artificial intelligence, economics, and industrial organization (Vol. 24839). Cambridge, MA, USA:: National Bureau of Economic Research.
Wooldridge, M. (2021). A brief history of artificial intelligence: what it is, where we are, and where we are going. Flatiron Books.
Downloads
Published
Versions
- 2024-05-01 (2)
- 2024-05-01 (1)
Issue
Section
License
Copyright (c) 2024 INTERNATIONAL JOURNAL OF ECONOMIC LITERATURE

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
INTERNATIONAL JOURNAL OF ECONOMIC LITERATURE © 2023 by Adisam Publisher is licensed under CC BY-SA 4.0